Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty Aware Neural Network from Similarity and Sensitivity (2304.14925v1)

Published 27 Apr 2023 in cs.LG, cs.AI, and cs.NE

Abstract: Researchers have proposed several approaches for neural network (NN) based uncertainty quantification (UQ). However, most of the approaches are developed considering strong assumptions. Uncertainty quantification algorithms often perform poorly in an input domain and the reason for poor performance remains unknown. Therefore, we present a neural network training method that considers similar samples with sensitivity awareness in this paper. In the proposed NN training method for UQ, first, we train a shallow NN for the point prediction. Then, we compute the absolute differences between prediction and targets and train another NN for predicting those absolute differences or absolute errors. Domains with high average absolute errors represent a high uncertainty. In the next step, we select each sample in the training set one by one and compute both prediction and error sensitivities. Then we select similar samples with sensitivity consideration and save indexes of similar samples. The ranges of an input parameter become narrower when the output is highly sensitive to that parameter. After that, we construct initial uncertainty bounds (UB) by considering the distribution of sensitivity aware similar samples. Prediction intervals (PIs) from initial uncertainty bounds are larger and cover more samples than required. Therefore, we train bound correction NN. As following all the steps for finding UB for each sample requires a lot of computation and memory access, we train a UB computation NN. The UB computation NN takes an input sample and provides an uncertainty bound. The UB computation NN is the final product of the proposed approach. Scripts of the proposed method are available in the following GitHub repository: github.com/dipuk0506/UQ

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (11)
  1. H M Dipu Kabir (8 papers)
  2. Subrota Kumar Mondal (3 papers)
  3. Sadia Khanam (2 papers)
  4. Abbas Khosravi (43 papers)
  5. Shafin Rahman (38 papers)
  6. Mohammad Reza Chalak Qazani (6 papers)
  7. Roohallah Alizadehsani (50 papers)
  8. Houshyar Asadi (11 papers)
  9. Shady Mohamed (6 papers)
  10. Saeid Nahavandi (61 papers)
  11. U Rajendra Acharya (15 papers)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com