Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Human Activity Recognition Using Self-Supervised Representations of Wearable Data (2304.14912v1)

Published 26 Apr 2023 in eess.SP, cs.AI, and cs.LG

Abstract: Automated and accurate human activity recognition (HAR) using body-worn sensors enables practical and cost efficient remote monitoring of Activity of DailyLiving (ADL), which are shown to provide clinical insights across multiple therapeutic areas. Development of accurate algorithms for human activity recognition(HAR) is hindered by the lack of large real-world labeled datasets. Furthermore, algorithms seldom work beyond the specific sensor on which they are prototyped, prompting debate about whether accelerometer-based HAR is even possible [Tong et al., 2020]. Here we develop a 6-class HAR model with strong performance when evaluated on real-world datasets not seen during training. Our model is based on a frozen self-supervised representation learned on a large unlabeled dataset, combined with a shallow multi-layer perceptron with temporal smoothing. The model obtains in-dataset state-of-the art performance on the Capture24 dataset ($\kappa= 0.86$). Out-of-distribution (OOD) performance is $\kappa = 0.7$, with both the representation and the perceptron models being trained on data from a different sensor. This work represents a key step towards device-agnostic HAR models, which can help contribute to increased standardization of model evaluation in the HAR field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.