Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Compiler Auto-tuning through Multiple Phase Learning (2304.14908v1)

Published 27 Apr 2023 in cs.PL

Abstract: Widely used compilers like GCC and LLVM usually have hundreds of optimizations controlled by optimization flags, which are enabled or disabled during compilation to improve runtime performance (e.g., small execution time) of the compiler program. Due to the large number of optimization flags and their combination, it is difficult for compiler users to manually tune compiler optimization flags. In the literature, a number of auto-tuning techniques have been proposed, which tune optimization flags for a compiled program by comparing its actual runtime performance with different optimization flag combination. Due to the huge search space and heavy actual runtime cost, these techniques suffer from the widely-recognized efficiency problem. To reduce the heavy runtime cost, in this paper we propose a lightweight learning approach which uses a small number of actual runtime performance data to predict the runtime performance of a compiled program with various optimization flag combination. Furthermore, to reduce the search space, we design a novel particle swarm algorithm which tunes compiler optimization flags with the prediction model. To evaluate the performance of the proposed approach CompTuner, we conduct an extensive experimental study on two popular C compilers GCC and LLVM with two widely used benchmarks cBench and PolyBench. The experimental results show that CompTuner significantly outperforms the five compared techniques, including the state-of-art technique BOCA.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.