Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Musical Voice Separation as Link Prediction: Modeling a Musical Perception Task as a Multi-Trajectory Tracking Problem (2304.14848v1)

Published 28 Apr 2023 in cs.SD, cs.AI, cs.LG, and eess.AS

Abstract: This paper targets the perceptual task of separating the different interacting voices, i.e., monophonic melodic streams, in a polyphonic musical piece. We target symbolic music, where notes are explicitly encoded, and model this task as a Multi-Trajectory Tracking (MTT) problem from discrete observations, i.e., notes in a pitch-time space. Our approach builds a graph from a musical piece, by creating one node for every note, and separates the melodic trajectories by predicting a link between two notes if they are consecutive in the same voice/stream. This kind of local, greedy prediction is made possible by node embeddings created by a heterogeneous graph neural network that can capture inter- and intra-trajectory information. Furthermore, we propose a new regularization loss that encourages the output to respect the MTT premise of at most one incoming and one outgoing link for every node, favouring monophonic (voice) trajectories; this loss function might also be useful in other general MTT scenarios. Our approach does not use domain-specific heuristics, is scalable to longer sequences and a higher number of voices, and can handle complex cases such as voice inversions and overlaps. We reach new state-of-the-art results for the voice separation task in classical music of different styles.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.