Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Synergy of Machine and Deep Learning Models for Multi-Painter Recognition (2304.14773v1)

Published 28 Apr 2023 in cs.CV and cs.AI

Abstract: The growing availability of digitized art collections has created the need to manage, analyze and categorize large amounts of data related to abstract concepts, highlighting a demanding problem of computer science and leading to new research perspectives. Advances in artificial intelligence and neural networks provide the right tools for this challenge. The analysis of artworks to extract features useful in certain works is at the heart of the era. In the present work, we approach the problem of painter recognition in a set of digitized paintings, derived from the WikiArt repository, using transfer learning to extract the appropriate features and classical machine learning methods to evaluate the result. Through the testing of various models and their fine tuning we came to the conclusion that RegNet performs better in exporting features, while SVM makes the best classification of images based on the painter with a performance of up to 85%. Also, we introduced a new large dataset for painting recognition task including 62 artists achieving good results.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.