Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Synergy of Machine and Deep Learning Models for Multi-Painter Recognition (2304.14773v1)

Published 28 Apr 2023 in cs.CV and cs.AI

Abstract: The growing availability of digitized art collections has created the need to manage, analyze and categorize large amounts of data related to abstract concepts, highlighting a demanding problem of computer science and leading to new research perspectives. Advances in artificial intelligence and neural networks provide the right tools for this challenge. The analysis of artworks to extract features useful in certain works is at the heart of the era. In the present work, we approach the problem of painter recognition in a set of digitized paintings, derived from the WikiArt repository, using transfer learning to extract the appropriate features and classical machine learning methods to evaluate the result. Through the testing of various models and their fine tuning we came to the conclusion that RegNet performs better in exporting features, while SVM makes the best classification of images based on the painter with a performance of up to 85%. Also, we introduced a new large dataset for painting recognition task including 62 artists achieving good results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Vassilis Lyberatos (8 papers)
  2. Paraskevi-Antonia Theofilou (2 papers)
  3. Jason Liartis (4 papers)
  4. Georgios Siolas (6 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.