Upward Translation of Optimal and P-Optimal Proof Systems in the Boolean Hierarchy over NP (2304.14702v2)
Abstract: We study the existence of optimal and p-optimal proof systems for classes in the Boolean hierarchy over $\mathrm{NP}$. Our main results concern $\mathrm{DP}$, i.e., the second level of this hierarchy: If all sets in $\mathrm{DP}$ have p-optimal proof systems, then all sets in $\mathrm{coDP}$ have p-optimal proof systems. The analogous implication for optimal proof systems fails relative to an oracle. As a consequence, we clarify such implications for all classes $\mathcal{C}$ and $\mathcal{D}$ in the Boolean hierarchy over $\mathrm{NP}$: either we can prove the implication or show that it fails relative to an oracle. Furthermore, we show that the sets $\mathrm{SAT}$ and $\mathrm{TAUT}$ have p-optimal proof systems, if and only if all sets in the Boolean hierarchy over $\mathrm{NP}$ have p-optimal proof systems which is a new characterization of a conjecture studied by Pudl\'ak.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.