Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

SAM Meets Robotic Surgery: An Empirical Study in Robustness Perspective (2304.14674v1)

Published 28 Apr 2023 in eess.IV, cs.CV, and cs.RO

Abstract: Segment Anything Model (SAM) is a foundation model for semantic segmentation and shows excellent generalization capability with the prompts. In this empirical study, we investigate the robustness and zero-shot generalizability of the SAM in the domain of robotic surgery in various settings of (i) prompted vs. unprompted; (ii) bounding box vs. points-based prompt; (iii) generalization under corruptions and perturbations with five severity levels; and (iv) state-of-the-art supervised model vs. SAM. We conduct all the observations with two well-known robotic instrument segmentation datasets of MICCAI EndoVis 2017 and 2018 challenges. Our extensive evaluation results reveal that although SAM shows remarkable zero-shot generalization ability with bounding box prompts, it struggles to segment the whole instrument with point-based prompts and unprompted settings. Furthermore, our qualitative figures demonstrate that the model either failed to predict the parts of the instrument mask (e.g., jaws, wrist) or predicted parts of the instrument as different classes in the scenario of overlapping instruments within the same bounding box or with the point-based prompt. In fact, it is unable to identify instruments in some complex surgical scenarios of blood, reflection, blur, and shade. Additionally, SAM is insufficiently robust to maintain high performance when subjected to various forms of data corruption. Therefore, we can argue that SAM is not ready for downstream surgical tasks without further domain-specific fine-tuning.

Citations (31)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.