Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Computation of Rate-Distortion-Perception Functions With Wasserstein Barycenter (2304.14611v1)

Published 28 Apr 2023 in cs.IT and math.IT

Abstract: The nascent field of Rate-Distortion-Perception (RDP) theory is seeing a surge of research interest due to the application of machine learning techniques in the area of lossy compression. The information RDP function characterizes the three-way trade-off between description rate, average distortion, and perceptual quality measured by discrepancy between probability distributions. However, computing RDP functions has been a challenge due to the introduction of the perceptual constraint, and existing research often resorts to data-driven methods. In this paper, we show that the information RDP function can be transformed into a Wasserstein Barycenter problem. The nonstrictly convexity brought by the perceptual constraint can be regularized by an entropy regularization term. We prove that the entropy regularized model converges to the original problem. Furthermore, we propose an alternating iteration method based on the Sinkhorn algorithm to numerically solve the regularized optimization problem. Experimental results demonstrate the efficiency and accuracy of the proposed algorithm.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.