Papers
Topics
Authors
Recent
2000 character limit reached

Algorithmic Recourse with Missing Values (2304.14606v2)

Published 28 Apr 2023 in cs.LG and stat.ML

Abstract: This paper proposes a new framework of algorithmic recourse (AR) that works even in the presence of missing values. AR aims to provide a recourse action for altering the undesired prediction result given by a classifier. Existing AR methods assume that we can access complete information on the features of an input instance. However, we often encounter missing values in a given instance (e.g., due to privacy concerns), and previous studies have not discussed such a practical situation. In this paper, we first empirically and theoretically show the risk that a naive approach with a single imputation technique fails to obtain good actions regarding their validity, cost, and features to be changed. To alleviate this risk, we formulate the task of obtaining a valid and low-cost action for a given incomplete instance by incorporating the idea of multiple imputation. Then, we provide some theoretical analyses of our task and propose a practical solution based on mixed-integer linear optimization. Experimental results demonstrated the efficacy of our method in the presence of missing values compared to the baselines.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.