Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Algorithmic Recourse with Missing Values (2304.14606v2)

Published 28 Apr 2023 in cs.LG and stat.ML

Abstract: This paper proposes a new framework of algorithmic recourse (AR) that works even in the presence of missing values. AR aims to provide a recourse action for altering the undesired prediction result given by a classifier. Existing AR methods assume that we can access complete information on the features of an input instance. However, we often encounter missing values in a given instance (e.g., due to privacy concerns), and previous studies have not discussed such a practical situation. In this paper, we first empirically and theoretically show the risk that a naive approach with a single imputation technique fails to obtain good actions regarding their validity, cost, and features to be changed. To alleviate this risk, we formulate the task of obtaining a valid and low-cost action for a given incomplete instance by incorporating the idea of multiple imputation. Then, we provide some theoretical analyses of our task and propose a practical solution based on mixed-integer linear optimization. Experimental results demonstrated the efficacy of our method in the presence of missing values compared to the baselines.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.