Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

MWaste: A Deep Learning Approach to Manage Household Waste (2304.14498v1)

Published 2 Apr 2023 in cs.CV, cs.AI, and cs.LG

Abstract: Computer vision methods have shown to be effective in classifying garbage into recycling categories for waste processing, existing methods are costly, imprecise, and unclear. To tackle this issue, we introduce MWaste, a mobile application that uses computer vision and deep learning techniques to classify waste materials as trash, plastic, paper, metal, glass or cardboard. Its effectiveness was tested on various neural network architectures and real-world images, achieving an average precision of 92\% on the test set. This app can help combat climate change by enabling efficient waste processing and reducing the generation of greenhouse gases caused by incorrect waste disposal.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)