Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Learning Environment for the Air Domain (LEAD) (2304.14423v1)

Published 27 Apr 2023 in cs.LG

Abstract: A substantial part of fighter pilot training is simulation-based and involves computer-generated forces controlled by predefined behavior models. The behavior models are typically manually created by eliciting knowledge from experienced pilots, which is a time-consuming process. Despite the work put in, the behavior models are often unsatisfactory due to their predictable nature and lack of adaptivity, forcing instructors to spend time manually monitoring and controlling them. Reinforcement and imitation learning pose as alternatives to handcrafted models. This paper presents the Learning Environment for the Air Domain (LEAD), a system for creating and integrating intelligent air combat behavior in military simulations. By incorporating the popular programming library and interface Gymnasium, LEAD allows users to apply readily available machine learning algorithms. Additionally, LEAD can communicate with third-party simulation software through distributed simulation protocols, which allows behavior models to be learned and employed using simulation systems of different fidelities.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.