Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers (2304.14390v1)

Published 27 Apr 2023 in stat.ML and cs.LG

Abstract: Annealed Importance Sampling (AIS) moves particles along a Markov chain from a tractable initial distribution to an intractable target distribution. The recently proposed Differentiable AIS (DAIS) (Geffner and Domke, 2021; Zhang et al., 2021) enables efficient optimization of the transition kernels of AIS and of the distributions. However, we observe a low effective sample size in DAIS, indicating degenerate distributions. We thus propose to extend DAIS by a resampling step inspired by Sequential Monte Carlo. Surprisingly, we find empirically-and can explain theoretically-that it is not necessary to differentiate through the resampling step which avoids gradient variance issues observed in similar approaches for Particle Filters (Maddison et al., 2017; Naesseth et al., 2018; Le et al., 2018).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.