Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

In-memory photonic dot-product engine with electrically programmable weight banks (2304.14302v1)

Published 27 Apr 2023 in physics.app-ph, cs.SY, eess.SY, and physics.optics

Abstract: Electronically reprogrammable photonic circuits based on phase-change chalcogenides present an avenue to resolve the von-Neumann bottleneck; however, implementation of such hybrid photonic-electronic processing has not achieved computational success. Here, we achieve this milestone by demonstrating an in-memory photonic-electronic dot-product engine, one that decouples electronic programming of phase-change materials (PCMs) and photonic computation. Specifically, we develop non-volatile electronically reprogrammable PCM memory cells with a record-high 4-bit weight encoding, the lowest energy consumption per unit modulation depth (1.7 nJ per dB) for Erase operation (crystallization), and a high switching contrast (158.5%) using non-resonant silicon-on-insulator waveguide microheater devices. This enables us to perform parallel multiplications for image processing with a superior contrast-to-noise ratio (greater than 87.36) that leads to an enhanced computing accuracy (standard deviation less than 0.007). An in-memory hybrid computing system is developed in hardware for convolutional processing for recognizing images from the MNIST database with inferencing accuracies of 86% and 87%.

Citations (61)

Summary

We haven't generated a summary for this paper yet.