Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Logarithmic-Regret Quantum Learning Algorithms for Zero-Sum Games (2304.14197v2)

Published 27 Apr 2023 in quant-ph, cs.LG, and math.OC

Abstract: We propose the first online quantum algorithm for solving zero-sum games with $\widetilde O(1)$ regret under the game setting. Moreover, our quantum algorithm computes an $\varepsilon$-approximate Nash equilibrium of an $m \times n$ matrix zero-sum game in quantum time $\widetilde O(\sqrt{m+n}/\varepsilon{2.5})$. Our algorithm uses standard quantum inputs and generates classical outputs with succinct descriptions, facilitating end-to-end applications. Technically, our online quantum algorithm "quantizes" classical algorithms based on the optimistic multiplicative weight update method. At the heart of our algorithm is a fast quantum multi-sampling procedure for the Gibbs sampling problem, which may be of independent interest.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.