Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Parameterized Theory of PAC Learning (2304.14058v1)

Published 27 Apr 2023 in cs.CC and cs.AI

Abstract: Probably Approximately Correct (i.e., PAC) learning is a core concept of sample complexity theory, and efficient PAC learnability is often seen as a natural counterpart to the class P in classical computational complexity. But while the nascent theory of parameterized complexity has allowed us to push beyond the P-NP ``dichotomy'' in classical computational complexity and identify the exact boundaries of tractability for numerous problems, there is no analogue in the domain of sample complexity that could push beyond efficient PAC learnability. As our core contribution, we fill this gap by developing a theory of parameterized PAC learning which allows us to shed new light on several recent PAC learning results that incorporated elements of parameterized complexity. Within the theory, we identify not one but two notions of fixed-parameter learnability that both form distinct counterparts to the class FPT -- the core concept at the center of the parameterized complexity paradigm -- and develop the machinery required to exclude fixed-parameter learnability. We then showcase the applications of this theory to identify refined boundaries of tractability for CNF and DNF learning as well as for a range of learning problems on graphs.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.