Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Vision Conformer: Incorporating Convolutions into Vision Transformer Layers (2304.13991v1)

Published 27 Apr 2023 in cs.CV and cs.LG

Abstract: Transformers are popular neural network models that use layers of self-attention and fully-connected nodes with embedded tokens. Vision Transformers (ViT) adapt transformers for image recognition tasks. In order to do this, the images are split into patches and used as tokens. One issue with ViT is the lack of inductive bias toward image structures. Because ViT was adapted for image data from language modeling, the network does not explicitly handle issues such as local translations, pixel information, and information loss in the structures and features shared by multiple patches. Conversely, Convolutional Neural Networks (CNN) incorporate this information. Thus, in this paper, we propose the use of convolutional layers within ViT. Specifically, we propose a model called a Vision Conformer (ViC) which replaces the Multi-Layer Perceptron (MLP) in a ViT layer with a CNN. In addition, to use the CNN, we proposed to reconstruct the image data after the self-attention in a reverse embedding layer. Through the evaluation, we demonstrate that the proposed convolutions help improve the classification ability of ViT.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.