Papers
Topics
Authors
Recent
Search
2000 character limit reached

Vision Conformer: Incorporating Convolutions into Vision Transformer Layers

Published 27 Apr 2023 in cs.CV and cs.LG | (2304.13991v1)

Abstract: Transformers are popular neural network models that use layers of self-attention and fully-connected nodes with embedded tokens. Vision Transformers (ViT) adapt transformers for image recognition tasks. In order to do this, the images are split into patches and used as tokens. One issue with ViT is the lack of inductive bias toward image structures. Because ViT was adapted for image data from language modeling, the network does not explicitly handle issues such as local translations, pixel information, and information loss in the structures and features shared by multiple patches. Conversely, Convolutional Neural Networks (CNN) incorporate this information. Thus, in this paper, we propose the use of convolutional layers within ViT. Specifically, we propose a model called a Vision Conformer (ViC) which replaces the Multi-Layer Perceptron (MLP) in a ViT layer with a CNN. In addition, to use the CNN, we proposed to reconstruct the image data after the self-attention in a reverse embedding layer. Through the evaluation, we demonstrate that the proposed convolutions help improve the classification ability of ViT.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.