Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bitcoin Double-Spending Attack Detection using Graph Neural Network (2304.13935v1)

Published 27 Apr 2023 in cs.CR

Abstract: Bitcoin transactions include unspent transaction outputs (UTXOs) as their inputs and generate one or more newly owned UTXOs at specified addresses. Each UTXO can only be used as an input in a transaction once, and using it in two or more different transactions is referred to as a double-spending attack. Ultimately, due to the characteristics of the Bitcoin protocol, double-spending is impossible. However, problems may arise when a transaction is considered final even though its finality has not been fully guaranteed in order to achieve fast payment. In this paper, we propose an approach to detecting Bitcoin double-spending attacks using a graph neural network (GNN). This model predicts whether all nodes in the network contain a given payment transaction in their own memory pool (mempool) using information only obtained from some observer nodes in the network. Our experiment shows that the proposed model can detect double-spending with an accuracy of at least 0.95 when more than about 1% of the entire nodes in the network are observer nodes.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.