Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Parrot Dilemma: Human-Labeled vs. LLM-augmented Data in Classification Tasks (2304.13861v2)

Published 26 Apr 2023 in cs.CL, cs.CY, and physics.soc-ph

Abstract: In the realm of Computational Social Science (CSS), practitioners often navigate complex, low-resource domains and face the costly and time-intensive challenges of acquiring and annotating data. We aim to establish a set of guidelines to address such challenges, comparing the use of human-labeled data with synthetically generated data from GPT-4 and Llama-2 in ten distinct CSS classification tasks of varying complexity. Additionally, we examine the impact of training data sizes on performance. Our findings reveal that models trained on human-labeled data consistently exhibit superior or comparable performance compared to their synthetically augmented counterparts. Nevertheless, synthetic augmentation proves beneficial, particularly in improving performance on rare classes within multi-class tasks. Furthermore, we leverage GPT-4 and Llama-2 for zero-shot classification and find that, while they generally display strong performance, they often fall short when compared to specialized classifiers trained on moderately sized training sets.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.