Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Scalable, Distributed AI Frameworks: Leveraging Cloud Computing for Enhanced Deep Learning Performance and Efficiency (2304.13738v1)

Published 26 Apr 2023 in cs.LG, cs.AI, and cs.NI

Abstract: In recent years, the integration of AI and cloud computing has emerged as a promising avenue for addressing the growing computational demands of AI applications. This paper presents a comprehensive study of scalable, distributed AI frameworks leveraging cloud computing for enhanced deep learning performance and efficiency. We first provide an overview of popular AI frameworks and cloud services, highlighting their respective strengths and weaknesses. Next, we delve into the critical aspects of data storage and management in cloud-based AI systems, discussing data preprocessing, feature engineering, privacy, and security. We then explore parallel and distributed training techniques for AI models, focusing on model partitioning, communication strategies, and cloud-based training architectures. In subsequent chapters, we discuss optimization strategies for AI workloads in the cloud, covering load balancing, resource allocation, auto-scaling, and performance benchmarking. We also examine AI model deployment and serving in the cloud, outlining containerization, serverless deployment options, and monitoring best practices. To ensure the cost-effectiveness of cloud-based AI solutions, we present a thorough analysis of costs, optimization strategies, and case studies showcasing successful deployments. Finally, we summarize the key findings of this study, discuss the challenges and limitations of cloud-based AI, and identify emerging trends and future research opportunities in the field.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube