Papers
Topics
Authors
Recent
2000 character limit reached

"I'm" Lost in Translation: Pronoun Missteps in Crowdsourced Data Sets (2304.13557v1)

Published 22 Apr 2023 in cs.CL, cs.CY, cs.HC, and cs.LG

Abstract: As virtual assistants continue to be taken up globally, there is an ever-greater need for these speech-based systems to communicate naturally in a variety of languages. Crowdsourcing initiatives have focused on multilingual translation of big, open data sets for use in NLP. Yet, language translation is often not one-to-one, and biases can trickle in. In this late-breaking work, we focus on the case of pronouns translated between English and Japanese in the crowdsourced Tatoeba database. We found that masculine pronoun biases were present overall, even though plurality in language was accounted for in other ways. Importantly, we detected biases in the translation process that reflect nuanced reactions to the presence of feminine, neutral, and/or non-binary pronouns. We raise the issue of translation bias for pronouns and offer a practical solution to embed plurality in NLP data sets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.