Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A mean-field games laboratory for generative modeling (2304.13534v5)

Published 26 Apr 2023 in stat.ML and cs.LG

Abstract: We demonstrate the versatility of mean-field games (MFGs) as a mathematical framework for explaining, enhancing, and designing generative models. In generative flows, a Lagrangian formulation is used where each particle (generated sample) aims to minimize a loss function over its simulated path. The loss, however, is dependent on the paths of other particles, which leads to a competition among the population of particles. The asymptotic behavior of this competition yields a mean-field game. We establish connections between MFGs and major classes of generative flows and diffusions including continuous-time normalizing flows, score-based generative models (SGM), and Wasserstein gradient flows. Furthermore, we study the mathematical properties of each generative model by studying their associated MFG's optimality condition, which is a set of coupled forward-backward nonlinear partial differential equations. The mathematical structure described by the MFG optimality conditions identifies the inductive biases of generative flows. We investigate the well-posedness and structure of normalizing flows, unravel the mathematical structure of SGMs, and derive a MFG formulation of Wasserstein gradient flows. From an algorithmic perspective, the optimality conditions yields Hamilton-Jacobi-BeLLMan (HJB) regularizers for enhanced training of generative models. In particular, we propose and demonstrate an HJB-regularized SGM with improved performance over standard SGMs. We present this framework as an MFG laboratory which serves as a platform for revealing new avenues of experimentation and invention of generative models.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.