Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Design and analysis of bent functions using $\mathcal{M}$-subspaces (2304.13432v1)

Published 26 Apr 2023 in cs.IT, math.CO, and math.IT

Abstract: In this article, we provide the first systematic analysis of bent functions $f$ on $\mathbb{F}_2{n}$ in the Maiorana-McFarland class $\mathcal{MM}$ regarding the origin and cardinality of their $\mathcal{M}$-subspaces, i.e., vector subspaces on which the second-order derivatives of $f$ vanish. By imposing restrictions on permutations $\pi$ of $\mathbb{F}_2{n/2}$, we specify the conditions, such that Maiorana-McFarland bent functions $f(x,y)=x\cdot \pi(y) + h(y)$ admit a unique $\mathcal{M}$-subspace of dimension $n/2$. On the other hand, we show that permutations $\pi$ with linear structures give rise to Maiorana-McFarland bent functions that do not have this property. In this way, we contribute to the classification of Maiorana-McFarland bent functions, since the number of $\mathcal{M}$-subspaces is invariant under equivalence. Additionally, we give several generic methods of specifying permutations $\pi$ so that $f\in\mathcal{MM}$ admits a unique $\mathcal{M}$-subspace. Most notably, using the knowledge about $\mathcal{M}$-subspaces, we show that using the bent 4-concatenation of four suitably chosen Maiorana-McFarland bent functions, one can in a generic manner generate bent functions on $\mathbb{F}_2{n}$ outside the completed Maiorana-McFarland class $\mathcal{MM}#$ for any even $n\geq 8$. Remarkably, with our construction methods it is possible to obtain inequivalent bent functions on $\mathbb{F}_28$ not stemming from two primary classes, the partial spread class $\mathcal{PS}$ and $\mathcal{MM}$. In this way, we contribute to a better understanding of the origin of bent functions in eight variables, since only a small fraction, of which size is about $2{76}$, stems from $\mathcal{PS}$ and $\mathcal{MM}$, whereas the total number of bent functions on $\mathbb{F}_28$ is approximately $2{106}$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.