Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solution of planar elastic stress problems using stress basis functions (2304.13251v1)

Published 26 Apr 2023 in math.NA and cs.NA

Abstract: The use of global displacement basis functions to solve boundary-value problems in linear elasticity is well established. No prior work uses a global stress tensor basis for such solutions. We present two such methods for solving stress problems in linear elasticity. In both methods, we split the sought stress $\sigma$ into two parts, where neither part is required to satisfy strain compatibility. The first part, $\sigma_p$, is any stress in equilibrium with the loading. The second part, $\sigma_h$, is a self-equilibrated stress field on the unloaded body. In both methods, $\sigma_h$ is expanded using tensor-valued global stress basis functions developed elsewhere. In the first method, the coefficients in the expansion are found by minimizing the strain energy based on the well-known complementary energy principle. For the second method, which is restricted to planar homogeneous isotropic bodies, we show that we merely need to minimize the squared $L2$ norm of the trace of stress. For demonstration, we solve eight stress problems involving sharp corners, multiple-connectedness, non-zero net force and/or moment on an internal hole, body force, discontinuous surface traction, material inhomogeneity, and anisotropy. The first method presents a new application of a known principle. The second method presents a hitherto unreported principle, to the best of our knowledge.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sankalp Tiwari (4 papers)
  2. Anindya Chatterjee (13 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.