Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Score-based Generative Modeling Through Backward Stochastic Differential Equations: Inversion and Generation (2304.13224v1)

Published 26 Apr 2023 in cs.LG and cs.AI

Abstract: The proposed BSDE-based diffusion model represents a novel approach to diffusion modeling, which extends the application of stochastic differential equations (SDEs) in machine learning. Unlike traditional SDE-based diffusion models, our model can determine the initial conditions necessary to reach a desired terminal distribution by adapting an existing score function. We demonstrate the theoretical guarantees of the model, the benefits of using Lipschitz networks for score matching, and its potential applications in various areas such as diffusion inversion, conditional diffusion, and uncertainty quantification. Our work represents a contribution to the field of score-based generative learning and offers a promising direction for solving real-world problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)