Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exponentially Convergent Numerical Method for Abstract Cauchy Problem with Fractional Derivative of Caputo Type (2304.13099v5)

Published 25 Apr 2023 in math.NA, cs.MS, cs.NA, math.AP, and math.CA

Abstract: We present an exponentially convergent numerical method to approximate the solution of the Cauchy problem for the inhomogeneous fractional differential equation with an unbounded operator coefficient and Caputo fractional derivative in time. The numerical method is based on the newly obtained solution formula that consolidates the mild solution representations of sub-parabolic, parabolic and sub-hyperbolic equations with sectorial operator coefficient $A$ and non-zero initial data. The involved integral operators are approximated using the sinc-quadrature formulas that are tailored to the spectral parameters of $A$, fractional order $\alpha$ and the smoothness of the first initial condition, as well as to the properties of the equation's right-hand side $f(t)$. The resulting method possesses exponential convergence for positive sectorial $A$, any finite $t$, including $t = 0$ and the whole range $\alpha \in (0,2)$. It is suitable for a practically important case, when no knowledge of $f(t)$ is available outside the considered interval $t \in [0, T]$. The algorithm of the method is capable of multi-level parallelism. We provide numerical examples that confirm the theoretical error estimates.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.