Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DuETT: Dual Event Time Transformer for Electronic Health Records (2304.13017v2)

Published 25 Apr 2023 in cs.LG

Abstract: Electronic health records (EHRs) recorded in hospital settings typically contain a wide range of numeric time series data that is characterized by high sparsity and irregular observations. Effective modelling for such data must exploit its time series nature, the semantic relationship between different types of observations, and information in the sparsity structure of the data. Self-supervised Transformers have shown outstanding performance in a variety of structured tasks in NLP and computer vision. But multivariate time series data contains structured relationships over two dimensions: time and recorded event type, and straightforward applications of Transformers to time series data do not leverage this distinct structure. The quadratic scaling of self-attention layers can also significantly limit the input sequence length without appropriate input engineering. We introduce the DuETT architecture, an extension of Transformers designed to attend over both time and event type dimensions, yielding robust representations from EHR data. DuETT uses an aggregated input where sparse time series are transformed into a regular sequence with fixed length; this lowers the computational complexity relative to previous EHR Transformer models and, more importantly, enables the use of larger and deeper neural networks. When trained with self-supervised prediction tasks, that provide rich and informative signals for model pre-training, our model outperforms state-of-the-art deep learning models on multiple downstream tasks from the MIMIC-IV and PhysioNet-2012 EHR datasets.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.