Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Bibliometric Data Fusion for Biomedical Information Retrieval (2304.13012v2)

Published 25 Apr 2023 in cs.DL

Abstract: Digital libraries in the scientific domain provide users access to a wide range of information to satisfy their diverse information needs. Here, ranking results play a crucial role in users' satisfaction. Exploiting bibliometric metadata, e.g., publications' citation counts or bibliometric indicators in general, for automatically identifying the most relevant results can boost retrieval performance. This work proposes bibliometric data fusion, which enriches existing systems' results by incorporating bibliometric metadata such as citations or altmetrics. Our results on three biomedical retrieval benchmarks from TREC Precision Medicine (TREC-PM) show that bibliometric data fusion is a promising approach to improve retrieval performance in terms of normalized Discounted Cumulated Gain (nDCG) and Average Precision (AP), at the cost of the Precision at 10 (P@10) rate. Patient users especially profit from this lightweight, data-sparse technique that applies to any digital library.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.