Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 31 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 9 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Room dimensions and absorption inference from room transfer function via machine learning (2304.12993v1)

Published 25 Apr 2023 in cs.SD and eess.AS

Abstract: The inference of the absorption configuration of an existing room solely using acoustic signals can be challenging. This research presents two methods for estimating the room dimensions and frequency-dependent absorption coefficients using room transfer functions. The first method, a knowledge-based approach, calculates the room dimensions through damped resonant frequencies of the room. The second method, a machine learning approach, employs multi-task convolutional neural networks for inferring the room dimensions and frequency-dependent absorption coefficients of each surface. The study shows that accurate wave-based simulation data can be used to train neural networks for real-world measurements and demonstrates a potential for this algorithm to be used to estimate the boundary input data for room acoustic simulations. The proposed methods can be a valuable tool for room acoustic simulations during acoustic renovation or intervention projects, as they enable to infer the room geometry and absorption conditions with reasonably small data requirements.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube