Papers
Topics
Authors
Recent
2000 character limit reached

Leveraging Audio-Tagging Assisted Sound Event Detection using Weakified Strong Labels and Frequency Dynamic Convolutions (2304.12688v1)

Published 25 Apr 2023 in eess.AS

Abstract: Jointly learning from a small labeled set and a larger unlabeled set is an active research topic under semi-supervised learning (SSL). In this paper, we propose a novel SSL method based on a two-stage framework for leveraging a large unlabeled in-domain set. Stage-1 of our proposed framework focuses on audio-tagging (AT), which assists the sound event detection (SED) system in Stage-2. The AT system is trained utilizing a strongly labeled set converted into weak predictions referred to as weakified set, a weakly labeled set, and an unlabeled set. This AT system then infers on the unlabeled set to generate reliable pseudo-weak labels, which are used with the strongly and weakly labeled set to train a frequency dynamic convolutional recurrent neural network-based SED system at Stage-2 in a supervised manner. Our system outperforms the baseline by 45.5% in terms of polyphonic sound detection score on the DESED real validation set.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.