Exploring the Mutual Influence between Self-Supervised Single-Frame and Multi-Frame Depth Estimation (2304.12685v2)
Abstract: Although both self-supervised single-frame and multi-frame depth estimation methods only require unlabeled monocular videos for training, the information they leverage varies because single-frame methods mainly rely on appearance-based features while multi-frame methods focus on geometric cues. Considering the complementary information of single-frame and multi-frame methods, some works attempt to leverage single-frame depth to improve multi-frame depth. However, these methods can neither exploit the difference between single-frame depth and multi-frame depth to improve multi-frame depth nor leverage multi-frame depth to optimize single-frame depth models. To fully utilize the mutual influence between single-frame and multi-frame methods, we propose a novel self-supervised training framework. Specifically, we first introduce a pixel-wise adaptive depth sampling module guided by single-frame depth to train the multi-frame model. Then, we leverage the minimum reprojection based distillation loss to transfer the knowledge from the multi-frame depth network to the single-frame network to improve single-frame depth. Finally, we regard the improved single-frame depth as a prior to further boost the performance of multi-frame depth estimation. Experimental results on the KITTI and Cityscapes datasets show that our method outperforms existing approaches in the self-supervised monocular setting.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.