Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Performance Evaluation of Regression Models in Predicting the Cost of Medical Insurance (2304.12605v1)

Published 25 Apr 2023 in cs.LG

Abstract: The study aimed to evaluate the regression models' performance in predicting the cost of medical insurance. The Three (3) Regression Models in Machine Learning namely Linear Regression, Gradient Boosting, and Support Vector Machine were used. The performance will be evaluated using the metrics RMSE (Root Mean Square), r2 (R Square), and K-Fold Cross-validation. The study also sought to pinpoint the feature that would be most important in predicting the cost of medical insurance.The study is anchored on the knowledge discovery in databases (KDD) process. (KDD) process refers to the overall process of discovering useful knowledge from data. It show the performance evaluation results reveal that among the three (3) Regression models, Gradient boosting received the highest r2 (R Square) 0.892 and the lowest RMSE (Root Mean Square) 1336.594. Furthermore, the 10-Fold Cross-validation weighted mean findings are not significantly different from the r2 (R Square) results of the three (3) regression models. In addition, Exploratory Data Analysis (EDA) using a box plot of descriptive statistics observed that in the charges and smoker features the median of one group lies outside of the box of the other group, so there is a difference between the two groups. It concludes that Gradient boosting appears to perform better among the three (3) regression models. K-Fold Cross-Validation concluded that the three (3) regression models are good. Moreover, Exploratory Data Analysis (EDA) using a box plot of descriptive statistics ceases that the highest charges are due to the smoker feature.

Citations (5)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.