Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

ContrastMotion: Self-supervised Scene Motion Learning for Large-Scale LiDAR Point Clouds (2304.12589v1)

Published 25 Apr 2023 in cs.CV

Abstract: In this paper, we propose a novel self-supervised motion estimator for LiDAR-based autonomous driving via BEV representation. Different from usually adopted self-supervised strategies for data-level structure consistency, we predict scene motion via feature-level consistency between pillars in consecutive frames, which can eliminate the effect caused by noise points and view-changing point clouds in dynamic scenes. Specifically, we propose \textit{Soft Discriminative Loss} that provides the network with more pseudo-supervised signals to learn discriminative and robust features in a contrastive learning manner. We also propose \textit{Gated Multi-frame Fusion} block that learns valid compensation between point cloud frames automatically to enhance feature extraction. Finally, \textit{pillar association} is proposed to predict pillar correspondence probabilities based on feature distance, and whereby further predicts scene motion. Extensive experiments show the effectiveness and superiority of our \textbf{ContrastMotion} on both scene flow and motion prediction tasks. The code is available soon.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.