Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Performance Optimization using Multimodal Modeling and Heterogeneous GNN (2304.12568v2)

Published 25 Apr 2023 in cs.DC, cs.LG, and cs.PF

Abstract: Growing heterogeneity and configurability in HPC architectures has made auto-tuning applications and runtime parameters on these systems very complex. Users are presented with a multitude of options to configure parameters. In addition to application specific solutions, a common approach is to use general purpose search strategies, which often might not identify the best configurations or their time to convergence is a significant barrier. There is, thus, a need for a general purpose and efficient tuning approach that can be easily scaled and adapted to various tuning tasks. We propose a technique for tuning parallel code regions that is general enough to be adapted to multiple tasks. In this paper, we analyze IR-based programming models to make task-specific performance optimizations. To this end, we propose the Multimodal Graph Neural Network and Autoencoder (MGA) tuner, a multimodal deep learning based approach that adapts Heterogeneous Graph Neural Networks and Denoizing Autoencoders for modeling IR-based code representations that serve as separate modalities. This approach is used as part of our pipeline to model a syntax, semantics, and structure-aware IR-based code representation for tuning parallel code regions/kernels. We extensively experiment on OpenMP and OpenCL code regions/kernels obtained from PolyBench, Rodinia, STREAM, DataRaceBench, AMD SDK, NPB, NVIDIA SDK, Parboil, SHOC, and LULESH benchmarks. We apply our multimodal learning techniques to the tasks of i) optimizing the number of threads, scheduling policy and chunk size in OpenMP loops and, ii) identifying the best device for heterogeneous device mapping of OpenCL kernels. Our experiments show that this multimodal learning based approach outperforms the state-of-the-art in all experiments.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.