Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Benchmark tasks for Quality-Diversity applied to Uncertain domains (2304.12454v2)

Published 24 Apr 2023 in cs.NE

Abstract: While standard approaches to optimisation focus on producing a single high-performing solution, Quality-Diversity (QD) algorithms allow large diverse collections of such solutions to be found. If QD has proven promising across a large variety of domains, it still struggles when faced with uncertain domains, where quantification of performance and diversity are non-deterministic. Previous work in Uncertain Quality-Diversity (UQD) has proposed methods and metrics designed for such uncertain domains. In this paper, we propose a first set of benchmark tasks to analyse and estimate the performance of UQD algorithms. We identify the key uncertainty properties to easily define UQD benchmark tasks: the uncertainty location, the type of distribution and its parameters. By varying the nature of those key UQD components, we introduce a set of 8 easy-to-implement and lightweight tasks, split into 3 main categories. All our tasks build on the Redundant Arm: a common QD environment that is lightweight and easily replicable. Each one of these tasks highlights one specific limitation that arises when considering UQD domains. With this first benchmark, we hope to facilitate later advances in UQD.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.