Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

LVQAC: Lattice Vector Quantization Coupled with Spatially Adaptive Companding for Efficient Learned Image Compression (2304.12319v1)

Published 25 Mar 2023 in eess.IV and cs.CV

Abstract: Recently, numerous end-to-end optimized image compression neural networks have been developed and proved themselves as leaders in rate-distortion performance. The main strength of these learnt compression methods is in powerful nonlinear analysis and synthesis transforms that can be facilitated by deep neural networks. However, out of operational expediency, most of these end-to-end methods adopt uniform scalar quantizers rather than vector quantizers, which are information-theoretically optimal. In this paper, we present a novel Lattice Vector Quantization scheme coupled with a spatially Adaptive Companding (LVQAC) mapping. LVQ can better exploit the inter-feature dependencies than scalar uniform quantization while being computationally almost as simple as the latter. Moreover, to improve the adaptability of LVQ to source statistics, we couple a spatially adaptive companding (AC) mapping with LVQ. The resulting LVQAC design can be easily embedded into any end-to-end optimized image compression system. Extensive experiments demonstrate that for any end-to-end CNN image compression models, replacing uniform quantizer by LVQAC achieves better rate-distortion performance without significantly increasing the model complexity.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.