Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AMR Parsing with Instruction Fine-tuned Pre-trained Language Models (2304.12272v1)

Published 24 Apr 2023 in cs.CL and cs.AI

Abstract: Instruction fine-tuned LLMs on a collection of instruction annotated datasets (FLAN) have shown highly effective to improve model performance and generalization to unseen tasks. However, a majority of standard parsing tasks including abstract meaning representation (AMR), universal dependency (UD), semantic role labeling (SRL) has been excluded from the FLAN collections for both model training and evaluations. In this paper, we take one of such instruction fine-tuned pre-trained LLMs, i.e. FLAN-T5, and fine-tune them for AMR parsing. Our extensive experiments on various AMR parsing tasks including AMR2.0, AMR3.0 and BioAMR indicate that FLAN-T5 fine-tuned models out-perform previous state-of-the-art models across all tasks. In addition, full fine-tuning followed by the parameter efficient fine-tuning, LoRA, further improves the model performances, setting new state-of-the-arts in Smatch on AMR2.0 (86.4), AMR3.0 (84.9) and BioAMR (82.3).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube