Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 72 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 43 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Enriching Source Code with Contextual Data for Code Completion Models: An Empirical Study (2304.12269v1)

Published 24 Apr 2023 in cs.CL

Abstract: Transformer-based pre-trained models have recently achieved great results in solving many software engineering tasks including automatic code completion which is a staple in a developer's toolkit. While many have striven to improve the code-understanding abilities of such models, the opposite -- making the code easier to understand -- has not been properly investigated. In this study, we aim to answer whether making code easier to understand through using contextual data improves the performance of pre-trained code LLMs for the task of code completion. We consider type annotations and comments as two common forms of additional contextual information that often help developers understand code better. For the experiments, we study code completion in two granularity levels; token and line completion and take three recent and large-scale LLMs for source code: UniXcoder, CodeGPT, and InCoder with five evaluation metrics. Finally, we perform the Wilcoxon Signed Rank test to gauge significance and measure the effect size. Contrary to our expectations, all models perform better if type annotations are removed (albeit the effect sizes are small). For comments, we find that the models perform better in the presence of multi-line comments (again with small effect sizes). Based on our observations, we recommend making proper design choices when training, fine-tuning, or simply selecting such models given the intended data and application. Better evaluations and multi-modal techniques can also be further investigated to improve the practicality and accuracy of auto-completions.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube