Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Causal fault localisation in dataflow systems (2304.11987v1)

Published 24 Apr 2023 in cs.SE and cs.AI

Abstract: Dataflow computing was shown to bring significant benefits to multiple niches of systems engineering and has the potential to become a general-purpose paradigm of choice for data-driven application development. One of the characteristic features of dataflow computing is the natural access to the dataflow graph of the entire system. Recently it has been observed that these dataflow graphs can be treated as complete graphical causal models, opening opportunities to apply causal inference techniques to dataflow systems. In this demonstration paper we aim to provide the first practical validation of this idea with a particular focus on causal fault localisation. We provide multiple demonstrations of how causal inference can be used to detect software bugs and data shifts in multiple scenarios with three modern dataflow engines.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.