Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 67 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards Top-$K$ Non-Overlapping Sequential Patterns (2304.11947v1)

Published 24 Apr 2023 in cs.DB

Abstract: Sequential pattern mining (SPM) has excellent prospects and application spaces and has been widely used in different fields. The non-overlapping SPM, as one of the data mining techniques, has been used to discover patterns that have requirements for gap constraints in some specific mining tasks, such as bio-data mining. And for the non-overlapping sequential patterns with gap constraints, the Nettree structure has been proposed to efficiently compute the support of the patterns. For pattern mining, users usually need to consider the threshold of minimum support (\textit{minsup}). This is especially difficult in the case of large databases. Although some existing algorithms can mine the top-$k$ patterns, they are approximate algorithms with fixed lengths. In this paper, a precise algorithm for mining \underline{T}op-$k$ \underline{N}on-\underline{O}verlapping \underline{S}equential \underline{P}atterns (TNOSP) is proposed. The top-$k$ solution of SPM is an effective way to discover the most frequent non-overlapping sequential patterns without having to set the \textit{minsup}. As a novel pattern mining algorithm, TNOSP can precisely search the top-$k$ patterns of non-overlapping sequences with different gap constraints. We further propose a pruning strategy named \underline{Q}ueue \underline{M}eta \underline{S}et \underline{P}runing (QMSP) to improve TNOSP's performance. TNOSP can reduce redundancy in non-overlapping sequential mining and has better performance in mining precise non-overlapping sequential patterns. The experimental results and comparisons on several datasets have shown that TNOSP outperformed the existing algorithms in terms of precision, efficiency, and scalability.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.