Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 74 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Portfolio Optimization using Predictive Auxiliary Classifier Generative Adversarial Networks with Measuring Uncertainty (2304.11856v1)

Published 24 Apr 2023 in q-fin.PM and cs.CE

Abstract: In financial engineering, portfolio optimization has been of consistent interest. Portfolio optimization is a process of modulating asset distributions to maximize expected returns and minimize risks. To obtain the expected returns, deep learning models have been explored in recent years. However, due to the deterministic nature of the models, it is difficult to consider the risk of portfolios because conventional deep learning models do not know how reliable their predictions can be. To address this limitation, this paper proposes a probabilistic model, namely predictive auxiliary classifier generative adversarial networks (PredACGAN). The proposed PredACGAN utilizes the characteristic of the ACGAN framework in which the output of the generator forms a distribution. While ACGAN has not been employed for predictive models and is generally utilized for image sample generation, this paper proposes a method to use the ACGAN structure for a probabilistic and predictive model. Additionally, an algorithm to use the risk measurement obtained by PredACGAN is proposed. In the algorithm, the assets that are predicted to be at high risk are eliminated from the investment universe at the rebalancing moment. Therefore, PredACGAN considers both return and risk to optimize portfolios. The proposed algorithm and PredACGAN have been evaluated with daily close price data of S&P 500 from 1990 to 2020. Experimental scenarios are assumed to rebalance the portfolios monthly according to predictions and risk measures with PredACGAN. As a result, a portfolio using PredACGAN exhibits 9.123% yearly returns and a Sharpe ratio of 1.054, while a portfolio without considering risk measures shows 1.024% yearly returns and a Sharpe ratio of 0.236 in the same scenario. Also, the maximum drawdown of the proposed portfolio is lower than the portfolio without PredACGAN.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube