Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Nuances are the Key: Unlocking ChatGPT to Find Failure-Inducing Tests with Differential Prompting (2304.11686v6)

Published 23 Apr 2023 in cs.SE

Abstract: Automatically detecting software failures is an important task and a longstanding challenge. It requires finding failure-inducing test cases whose test input can trigger the software's fault, and constructing an automated oracle to detect the software's incorrect behaviors. Recent advancement of LLMs motivates us to study how far this challenge can be addressed by ChatGPT, a state-of-the-art LLM. Unfortunately, our study shows that ChatGPT has a low probability (28.8%) of finding correct failure-inducing test cases for buggy programs. A possible reason is that finding failure-inducing test cases requires analyzing the subtle code differences between a buggy program and its correct version. When these two versions have similar syntax, ChatGPT is weak at recognizing subtle code differences. Our insight is that ChatGPT's performance can be substantially enhanced when ChatGPT is guided to focus on the subtle code difference. We have an interesting observation that ChatGPT is effective in inferring the intended behaviors of a buggy program. The intended behavior can be leveraged to synthesize programs, in order to make the subtle code difference between a buggy program and its correct version (i.e., the synthesized program) explicit. Driven by this observation, we propose a novel approach that synergistically combines ChatGPT and differential testing to find failure-inducing test cases. We evaluate our approach on Quixbugs (a benchmark of buggy programs), and compare it with state-of-the-art baselines, including direct use of ChatGPT and Pynguin. The experimental result shows that our approach has a much higher probability (77.8%) of finding correct failure-inducing test cases, 2.7X as the best baseline.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.