Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Provable Reach-avoid Controllers Synthesis Based on Inner-approximating Controlled Reach-avoid Sets (2304.11550v1)

Published 23 Apr 2023 in eess.SY and cs.SY

Abstract: In this paper, we propose an approach for synthesizing provable reach-avoid controllers, which drive a deterministic system operating in an unknown environment to safely reach a desired target set. The approach falls within the reachability analysis framework and is based on the computation of inner-approximations of controlled reach-avoid sets(CRSs). Given a target set and a safe set, the controlled reach-avoid set is the set of states such that starting from each of them, there exists at least one controller to ensure that the system can enter the target set while staying inside the safe set before the target hitting time. Therefore, the boundary of the controlled reach-avoid set acts as a barrier, which separating states capable of achieving the reach-avoid objective from those that are not, and thus the computed inner-approximation provides a viable space for the system to achieve the reach-avoid objective. Our approach for synthesizing reach-avoid controllers mainly consists of three steps. We first learn a safe set of states in the unknown environment from sensor measurements based on a support vector machine approach. Then, based on the learned safe set and target set, we compute an inner-approximation of the CRS. Finally, we synthesize controllers online to ensure that the system will reach the target set by evolving inside the computed inner-approximation. The proposed method is demonstrated on a Dubin's car system.

Summary

We haven't generated a summary for this paper yet.