Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Semi-Supervised Semantic Segmentation With Region Relevance (2304.11539v1)

Published 23 Apr 2023 in cs.CV

Abstract: Semi-supervised semantic segmentation aims to learn from a small amount of labeled data and plenty of unlabeled ones for the segmentation task. The most common approach is to generate pseudo-labels for unlabeled images to augment the training data. However, the noisy pseudo-labels will lead to cumulative classification errors and aggravate the local inconsistency in prediction. This paper proposes a Region Relevance Network (RRN) to alleviate the problem mentioned above. Specifically, we first introduce a local pseudo-label filtering module that leverages discriminator networks to assess the accuracy of the pseudo-label at the region level. A local selection loss is proposed to mitigate the negative impact of wrong pseudo-labels in consistency regularization training. In addition, we propose a dynamic region-loss correction module, which takes the merit of network diversity to further rate the reliability of pseudo-labels and correct the convergence direction of the segmentation network with a dynamic region loss. Extensive experiments are conducted on PASCAL VOC 2012 and Cityscapes datasets with varying amounts of labeled data, demonstrating that our proposed approach achieves state-of-the-art performance compared to current counterparts.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube