Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

AutoVRL: A High Fidelity Autonomous Ground Vehicle Simulator for Sim-to-Real Deep Reinforcement Learning (2304.11496v2)

Published 22 Apr 2023 in cs.RO

Abstract: Deep Reinforcement Learning (DRL) enables cognitive Autonomous Ground Vehicle (AGV) navigation utilizing raw sensor data without a-priori maps or GPS, which is a necessity in hazardous, information poor environments such as regions where natural disasters occur, and extraterrestrial planets. The substantial training time required to learn an optimal DRL policy, which can be days or weeks for complex tasks, is a major hurdle to real-world implementation in AGV applications. Training entails repeated collisions with the surrounding environment over an extended time period, dependent on the complexity of the task, to reinforce positive exploratory, application specific behavior that is expensive, and time consuming in the real-world. Effectively bridging the simulation to real-world gap is a requisite for successful implementation of DRL in complex AGV applications, enabling learning of cost-effective policies. We present AutoVRL, an open-source high fidelity simulator built upon the Bullet physics engine utilizing OpenAI Gym and Stable Baselines3 in PyTorch to train AGV DRL agents for sim-to-real policy transfer. AutoVRL is equipped with sensor implementations of GPS, IMU, LiDAR and camera, actuators for AGV control, and realistic environments, with extensibility for new environments and AGV models. The simulator provides access to state-of-the-art DRL algorithms, utilizing a python interface for simple algorithm and environment customization, and simulation execution.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.