Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Dehazing-NeRF: Neural Radiance Fields from Hazy Images (2304.11448v1)

Published 22 Apr 2023 in cs.CV

Abstract: Neural Radiance Field (NeRF) has received much attention in recent years due to the impressively high quality in 3D scene reconstruction and novel view synthesis. However, image degradation caused by the scattering of atmospheric light and object light by particles in the atmosphere can significantly decrease the reconstruction quality when shooting scenes in hazy conditions. To address this issue, we propose Dehazing-NeRF, a method that can recover clear NeRF from hazy image inputs. Our method simulates the physical imaging process of hazy images using an atmospheric scattering model, and jointly learns the atmospheric scattering model and a clean NeRF model for both image dehazing and novel view synthesis. Different from previous approaches, Dehazing-NeRF is an unsupervised method with only hazy images as the input, and also does not rely on hand-designed dehazing priors. By jointly combining the depth estimated from the NeRF 3D scene with the atmospheric scattering model, our proposed model breaks through the ill-posed problem of single-image dehazing while maintaining geometric consistency. Besides, to alleviate the degradation of image quality caused by information loss, soft margin consistency regularization, as well as atmospheric consistency and contrast discriminative loss, are addressed during the model training process. Extensive experiments demonstrate that our method outperforms the simple combination of single-image dehazing and NeRF on both image dehazing and novel view image synthesis.

Citations (3)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.