Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ML-based Approaches for Wireless NLOS Localization: Input Representations and Uncertainty Estimation (2304.11396v1)

Published 22 Apr 2023 in cs.NI and cs.AI

Abstract: The challenging problem of non-line-of-sight (NLOS) localization is critical for many wireless networking applications. The lack of available datasets has made NLOS localization difficult to tackle with ML-driven methods, but recent developments in synthetic dataset generation have provided new opportunities for research. This paper explores three different input representations: (i) single wireless radio path features, (ii) wireless radio link features (multi-path), and (iii) image-based representations. Inspired by the two latter new representations, we design two convolutional neural networks (CNNs) and we demonstrate that, although not significantly improving the NLOS localization performance, they are able to support richer prediction outputs, thus allowing deeper analysis of the predictions. In particular, the richer outputs enable reliable identification of non-trustworthy predictions and support the prediction of the top-K candidate locations for a given instance. We also measure how the availability of various features (such as angles of signal departure and arrival) affects the model's performance, providing insights about the types of data that should be collected for enhanced NLOS localization. Our insights motivate future work on building more efficient neural architectures and input representations for improved NLOS localization performance, along with additional useful application features.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.