Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Uniform convergence of finite element method on Bakhvalov-type mesh for a 2-D singularly perturbed convection-diffusion problem with exponential layers (2304.11368v1)

Published 22 Apr 2023 in math.NA and cs.NA

Abstract: On Bakhvalov-type mesh, uniform convergence analysis of finite element method for a 2-D singularly perturbed convection-diffusion problem with exponential layers is still an open problem. Previous attempts have been unsuccessful. The primary challenges are the width of the mesh subdomain in the layer adjacent to the transition point, the restriction of the Dirichlet boundary condition, and the structure of exponential layers. To address these challenges, a novel analysis technique is introduced for the first time, which takes full advantage of the characteristics of interpolation and the connection between the smooth function and the layer function on the boundary. Utilizing this technique in conjunction with a new interpolation featuring a simple structure, uniform convergence of optimal order k+1 under an energy norm can be proven for finite element method of any order k. Numerical experiments confirm our theoretical results.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.