Papers
Topics
Authors
Recent
2000 character limit reached

Lookahead Diffusion Probabilistic Models for Refining Mean Estimation (2304.11312v1)

Published 22 Apr 2023 in cs.AI and cs.LG

Abstract: We propose lookahead diffusion probabilistic models (LA-DPMs) to exploit the correlation in the outputs of the deep neural networks (DNNs) over subsequent timesteps in diffusion probabilistic models (DPMs) to refine the mean estimation of the conditional Gaussian distributions in the backward process. A typical DPM first obtains an estimate of the original data sample $\boldsymbol{x}$ by feeding the most recent state $\boldsymbol{z}i$ and index $i$ into the DNN model and then computes the mean vector of the conditional Gaussian distribution for $\boldsymbol{z}{i-1}$. We propose to calculate a more accurate estimate for $\boldsymbol{x}$ by performing extrapolation on the two estimates of $\boldsymbol{x}$ that are obtained by feeding $(\boldsymbol{z}{i+1},i+1)$ and $(\boldsymbol{z}{i},i)$ into the DNN model. The extrapolation can be easily integrated into the backward process of existing DPMs by introducing an additional connection over two consecutive timesteps, and fine-tuning is not required. Extensive experiments showed that plugging in the additional connection into DDPM, DDIM, DEIS, S-PNDM, and high-order DPM-Solvers leads to a significant performance gain in terms of FID score.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.