Papers
Topics
Authors
Recent
2000 character limit reached

A vector quantized masked autoencoder for speech emotion recognition (2304.11117v1)

Published 21 Apr 2023 in cs.SD, cs.LG, and eess.AS

Abstract: Recent years have seen remarkable progress in speech emotion recognition (SER), thanks to advances in deep learning techniques. However, the limited availability of labeled data remains a significant challenge in the field. Self-supervised learning has recently emerged as a promising solution to address this challenge. In this paper, we propose the vector quantized masked autoencoder for speech (VQ-MAE-S), a self-supervised model that is fine-tuned to recognize emotions from speech signals. The VQ-MAE-S model is based on a masked autoencoder (MAE) that operates in the discrete latent space of a vector-quantized variational autoencoder. Experimental results show that the proposed VQ-MAE-S model, pre-trained on the VoxCeleb2 dataset and fine-tuned on emotional speech data, outperforms an MAE working on the raw spectrogram representation and other state-of-the-art methods in SER.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.