A time multiscale decomposition in cyclic elasto-plasticity (2304.11026v1)
Abstract: For the numerical simulation of time-dependent problems, recent works suggest the use of a time marching scheme based on a tensorial decomposition of the time axis. This time-separated representation is straightforwardly introduced in the framework of the Proper Generalized Decomposition (PGD). The time coordinate is transformed into a multi-dimensional time through new separated coordinates, the micro and the macro times. From a physical viewpoint, the time evolution of all the quantities involved in the problem can be followed along two time scales, the fast one (micro-scale) and the slow one (macro-scale). In this paper, the method is applied to compute the quasi-static response of an elasto-plastic structure under cyclic loadings. The study shows the existence of a physically consistent temporal decomposition in computational cyclic plasticity. Such micro-macro characterization may be particularly appealing in high-cycle loading analyses, such as aging and fatigue, addressed in a future work in progress.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.